Hinweis: Diese Seite ist Teil eines vorläufigen Skripts zur Vorlesung Strömungsakustik an der TU-Berlin. Zur aktuellen Version des Skripts gelangt man über die Hauptseite.


%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\documentclass[a4paper,12pt]{article}
%\documentclass[a4paper,12pt]{ltnews}
\usepackage{german}
\usepackage[latin1]{inputenc}
\usepackage{epsfig}

\setlength{\hoffset}{-0.5in}
\setlength{\voffset}{-1in}

\setlength{\textwidth}{17.0cm}
\setlength{\textheight}{23.0cm}
\setlength{\topmargin}{1.0cm}

\newcommand{\vv}{\vec{v}\,'}
\newcommand{\ff}[2]{\displaystyle\frac{#1}{#2}}
\newcommand{\pp}[2]{\displaystyle\frac{\partial #1}{\partial #2}}
\newcommand{\zz}[1]{\displaystyle\frac{\partial^2 #1}{\partial t^2}}

\begin{document}
\begin{titlepage}

\noindent%
{\large \bf Mathematische Hilfsmittel}

\vspace{0.5 cm}

\noindent%
{\bf Produktregel für Divergenz-Operator:}

$h(\vec{x})$: Skalarfeld; $\vec{a}(\vec{x})$: Vektorfeld
\begin{displaymath}
\hbox{div} (h \cdot \vec{a}) =
h \cdot \hbox{div} \, \vec{a} + \hbox{grad} \, h \cdot \vec{a}
\end{displaymath}

\vspace{0.5 cm}

\noindent%
{\bf Laplace-Operator in Kugelkoordinaten:}

%xx
%
\begin{center}
\setlength{\unitlength}{10.0mm}%
\begin{picture}(15.0,5.5) \thicklines
\put(0.0,0.0){\makebox(0,0)[lb]{\epsfig{file=kugelkoo03.eps,width=7.5cm}}}
\put(4.1,2.5){\makebox(0,0)[cc]{$\theta$}}
\put(1.85,0.6){\makebox(0,0)[cc]{$\varphi$}}
\put(4.1,3.6){\makebox(0,0)[cc]{$r$}}
\put(5.3,4.6){\makebox(0,0)[cc]{$P$}}
\put(7.0,1.4){\makebox(0,0)[cc]{$x_1$}}
\put(6.4,4.2){\makebox(0,0)[cc]{$x_2$}}
\put(2.8,4.9){\makebox(0,0)[cc]{$x_3$}}
\put(12.0,3.5){\makebox(0,0)[cc]
{\begin{minipage}[c]{5.0cm}
Koordinaten des Punktes P:
\begin{displaymath}
\begin{array}{r@{\,}l}
x_1 &= r \; \cos \, \theta \\
x_2 &= r \; \sin \, \theta \; \cos \, \varphi \\
x_3 &= r \; \sin \, \theta \; \sin \, \varphi
\end{array}
\end{displaymath}
\end{minipage}}}
\end{picture}
\end{center}
%


\begin{displaymath}
\Delta
=
\ff{1}{r^2} \pp{}{r} \left( r^2 \pp{}{r}\right)
+
\ff{1}{r^2 \sin \theta} \; \pp{}{\theta} \left( \sin \theta \; \pp{}{\theta} \right)
+
\ff{1}{r^2 \sin^2 \theta} \; \ff{\partial^2 }{\partial \varphi^2}
\end{displaymath}

%$b(x,y,z)$: Skalarfeld

\vspace{1.25 cm}

\noindent%
{\bf Laplace-Operator in Zylinderkoordinaten:}

\vspace{0.5 cm}


%
\begin{center}
\setlength{\unitlength}{10.0mm}%
\begin{picture}(15.0,5.5) \thicklines
\put(0.0,0.0){\makebox(0,0)[lb]{\epsfig{file=zylinder01.eps,width=7.5cm}}}
\put(5.0,2.15){\makebox(0,0)[cc]{$\varphi$}}
\put(4.8,2.65){\makebox(0,0)[cc]{$r$}}
\put(5.5,3.6){\makebox(0,0)[cc]{$z$}}
\put(6.1,5.3){\makebox(0,0)[cc]{$P$}}
\put(6.3,1.45){\makebox(0,0)[cc]{$x_1$}}
\put(6.9,4.2){\makebox(0,0)[cc]{$x_2$}}
\put(3.0,5.1){\makebox(0,0)[cc]{$x_3$}}
\put(12.0,3.5){\makebox(0,0)[cc]
{\begin{minipage}[c]{5.0cm}
Koordinaten des Punktes P:
\begin{displaymath}
\begin{array}{r@{\,}l}
x_1 &= r \; \cos \, \varphi \\
x_2 &= r \; \sin \, \varphi \\
x_3 &= z
\end{array}
\end{displaymath}
\end{minipage}}}
\end{picture}
\end{center}
%

\begin{displaymath}
\Delta
=
\ff{1}{r} \pp{}{r} \left( r \pp{}{r}\right)
+
\ff{1}{r^2} \; \ff{\partial^2 }{\partial \varphi^2}
+
\ff{\partial^2 }{\partial z^2}
\end{displaymath}

\end{titlepage}
\end{document}